direct product, metabelian, supersoluble, monomial
Aliases: C3×C32⋊C18, C33⋊2C18, C34.2C6, (C32×C9)⋊2S3, C32⋊C9⋊17C6, C32⋊2(C3×C18), C32.16(S3×C9), C33.20(C3×C6), C33.75(C3×S3), C32.28(S3×C32), C32.48(C32⋊C6), (C3×C3⋊S3)⋊C9, C3.2(S3×C3×C9), C3⋊S3⋊2(C3×C9), (C3×C9)⋊9(C3×S3), (C3×C32⋊C9)⋊1C2, (C32×C3⋊S3).1C3, (C3×C3⋊S3).1C32, C3.10(C3×C32⋊C6), SmallGroup(486,93)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C3×C32⋊C18 |
Generators and relations for C3×C32⋊C18
G = < a,b,c,d | a3=b3=c3=d18=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=c-1 >
Subgroups: 472 in 126 conjugacy classes, 36 normal (15 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, C32, C18, C3×S3, C3⋊S3, C3×C6, C3×C9, C3×C9, C33, C33, C33, S3×C9, C3×C18, S3×C32, C3×C3⋊S3, C3×C3⋊S3, C32⋊C9, C32⋊C9, C32×C9, C32×C9, C34, C32⋊C18, S3×C3×C9, C32×C3⋊S3, C3×C32⋊C9, C3×C32⋊C18
Quotients: C1, C2, C3, S3, C6, C9, C32, C18, C3×S3, C3×C6, C3×C9, S3×C9, C32⋊C6, C3×C18, S3×C32, C32⋊C18, S3×C3×C9, C3×C32⋊C6, C3×C32⋊C18
(1 28 43)(2 29 44)(3 30 45)(4 31 46)(5 32 47)(6 33 48)(7 34 49)(8 35 50)(9 36 51)(10 19 52)(11 20 53)(12 21 54)(13 22 37)(14 23 38)(15 24 39)(16 25 40)(17 26 41)(18 27 42)
(1 28 43)(2 8 14)(3 51 24)(4 46 31)(5 17 11)(6 27 54)(7 34 49)(9 39 30)(10 52 19)(12 33 42)(13 22 37)(15 45 36)(16 40 25)(18 21 48)(20 32 26)(23 29 35)(38 44 50)(41 53 47)
(1 37 34)(2 35 38)(3 39 36)(4 19 40)(5 41 20)(6 21 42)(7 43 22)(8 23 44)(9 45 24)(10 25 46)(11 47 26)(12 27 48)(13 49 28)(14 29 50)(15 51 30)(16 31 52)(17 53 32)(18 33 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
G:=sub<Sym(54)| (1,28,43)(2,29,44)(3,30,45)(4,31,46)(5,32,47)(6,33,48)(7,34,49)(8,35,50)(9,36,51)(10,19,52)(11,20,53)(12,21,54)(13,22,37)(14,23,38)(15,24,39)(16,25,40)(17,26,41)(18,27,42), (1,28,43)(2,8,14)(3,51,24)(4,46,31)(5,17,11)(6,27,54)(7,34,49)(9,39,30)(10,52,19)(12,33,42)(13,22,37)(15,45,36)(16,40,25)(18,21,48)(20,32,26)(23,29,35)(38,44,50)(41,53,47), (1,37,34)(2,35,38)(3,39,36)(4,19,40)(5,41,20)(6,21,42)(7,43,22)(8,23,44)(9,45,24)(10,25,46)(11,47,26)(12,27,48)(13,49,28)(14,29,50)(15,51,30)(16,31,52)(17,53,32)(18,33,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;
G:=Group( (1,28,43)(2,29,44)(3,30,45)(4,31,46)(5,32,47)(6,33,48)(7,34,49)(8,35,50)(9,36,51)(10,19,52)(11,20,53)(12,21,54)(13,22,37)(14,23,38)(15,24,39)(16,25,40)(17,26,41)(18,27,42), (1,28,43)(2,8,14)(3,51,24)(4,46,31)(5,17,11)(6,27,54)(7,34,49)(9,39,30)(10,52,19)(12,33,42)(13,22,37)(15,45,36)(16,40,25)(18,21,48)(20,32,26)(23,29,35)(38,44,50)(41,53,47), (1,37,34)(2,35,38)(3,39,36)(4,19,40)(5,41,20)(6,21,42)(7,43,22)(8,23,44)(9,45,24)(10,25,46)(11,47,26)(12,27,48)(13,49,28)(14,29,50)(15,51,30)(16,31,52)(17,53,32)(18,33,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );
G=PermutationGroup([[(1,28,43),(2,29,44),(3,30,45),(4,31,46),(5,32,47),(6,33,48),(7,34,49),(8,35,50),(9,36,51),(10,19,52),(11,20,53),(12,21,54),(13,22,37),(14,23,38),(15,24,39),(16,25,40),(17,26,41),(18,27,42)], [(1,28,43),(2,8,14),(3,51,24),(4,46,31),(5,17,11),(6,27,54),(7,34,49),(9,39,30),(10,52,19),(12,33,42),(13,22,37),(15,45,36),(16,40,25),(18,21,48),(20,32,26),(23,29,35),(38,44,50),(41,53,47)], [(1,37,34),(2,35,38),(3,39,36),(4,19,40),(5,41,20),(6,21,42),(7,43,22),(8,23,44),(9,45,24),(10,25,46),(11,47,26),(12,27,48),(13,49,28),(14,29,50),(15,51,30),(16,31,52),(17,53,32),(18,33,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])
90 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3Q | 3R | ··· | 3Z | 6A | ··· | 6H | 9A | ··· | 9R | 9S | ··· | 9AJ | 18A | ··· | 18R |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 9 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | ··· | 6 | 9 | ··· | 9 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
90 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | |||||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | C9 | C18 | S3 | C3×S3 | C3×S3 | S3×C9 | C32⋊C6 | C32⋊C18 | C3×C32⋊C6 |
kernel | C3×C32⋊C18 | C3×C32⋊C9 | C32⋊C18 | C32×C3⋊S3 | C32⋊C9 | C34 | C3×C3⋊S3 | C33 | C32×C9 | C3×C9 | C33 | C32 | C32 | C3 | C3 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 18 | 18 | 1 | 6 | 2 | 18 | 1 | 6 | 2 |
Matrix representation of C3×C32⋊C18 ►in GL8(𝔽19)
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 18 | 2 | 0 | 16 | 13 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 8 | 5 | 0 | 0 | 0 | 11 |
13 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 8 | 5 | 0 | 2 | 10 | 4 |
0 | 0 | 14 | 4 | 0 | 11 | 6 | 7 |
0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 4 | 0 | 0 | 0 |
0 | 0 | 15 | 3 | 9 | 7 | 2 | 14 |
G:=sub<GL(8,GF(19))| [11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11],[7,12,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,8,0,0,18,0,0,0,7,1,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,7,0,16,0,0,0,0,0,0,11,13,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,7,0,0,0,0,8,0,0,0,7,0,0,0,5,0,0,0,0,7,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11],[13,10,0,0,0,0,0,0,17,6,0,0,0,0,0,0,0,0,0,8,14,0,12,15,0,0,0,5,4,7,12,3,0,0,0,0,0,0,4,9,0,0,0,2,11,0,0,7,0,0,7,10,6,0,0,2,0,0,0,4,7,0,0,14] >;
C3×C32⋊C18 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes C_{18}
% in TeX
G:=Group("C3xC3^2:C18");
// GroupNames label
G:=SmallGroup(486,93);
// by ID
G=gap.SmallGroup(486,93);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,115,3244,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^3=d^18=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=c^-1>;
// generators/relations